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ON THE NUMBER OF SUBGRAPHS 
OF PRESCRIBED TYPE OF GRAPHS 

WITH A GIVEN NUMBER OF EDGES* 

BY 
NOGAALON 

ABSTRACT 

All graphs considered are finite, undirected, with no loops, no multiple edges 
and no isolated vertices. For a graph H=(V(H),E(H))  and for S C V(H) 
define N(S) = {x ~ V(H):xy E E(H) for some y E S}. Define also ~(H) = 
max{I S I-IN(S)I:S C V(H)}, -,/(H) = ~,(I V(H)I + 8(H)). For two graphs G, H 
let N(G, H) denote the number of subgraphs of G isomorphic to/4. Define also 
for I > 0, N(L H) = max N(G, H), where the maximum is taken over all graphs 
G with l edges. We investigate the asymptotic behaviour of N(l, H) for fixed H 
as I tends to infinity. The main results are: 

THEOREM A. For eoery graph H there are positioe constants c~, c2 such that 

ctl~m~<=N(I,H)<=c,_l ~'m foralll>=lE(H)l. 

THEOREM B. If ~(H) = 0 then 

1 
O t l - , 2 ~ . - - .  (21)ml"~ l /2  N(I,H)=(I+ ., ,, ]AutHi 

where I Aut H I is the number of automorphisms o[ H. 

(It turns out that ~5(H)= 0 itl H has a spanning subgraph which is a disjoint 
union of cycles and isolated edges.) 

Notations and definitions 

All  g r aphs  c o n s i d e r e d  in this p a p e r  are  f in i te  a n d  s imple  (no  loops ,  n o  m u l t i p l e  

edges)  a n d  have  n o  i so la ted  ver t ices .  F o r  every  set A,  t A I is t he  c a rd ina l i t y  of  A.  

Gt is a g raph  with I edges .  K ( n )  is t he  c o m p l e t e  g raph  on  n ver t ices  (n _-> 2). P(r )  

is t he  p a t h  of l eng th  r (r => 1). C ( h )  is t h e  cycle  of l eng th  h (h >= 3). I ( k )  is t he  

g raph  cons i s t ing  of k i n d e p e n d e n t  edges  ( =  d i s j o i n t  u n i o n  of k P(1) ' s ) ,  k _-> 1. 

K ( I ,  k )  is t he  s tar  cons i s t i ng  of  k edges  i n c i d e n t  wi th  o n e  c o m m o n  ver tex .  

'This paper forms part of an M.Sc. Thesis written by the author under the supervision of Prof. 
M. A. Perles from the Hebrew University of Jerusalem. 
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For every graph G:  V(G) is the set of vertices of G, E(G) is its set of edges. 

k(G) = ½1V(G)I. Aut G is the group of automorphisms of G. N(x) is the set of 

vertices adjacent to a vertex x~  V(G). For S CV(G) we put N ( S ) =  

I,.J {N(x):  x E S}. If needed, we indicate the underlying graph by a subscript and 

write Nc (S). 

F o r  every graph G on v vertices and every spanning subgraph H of G, 

x(G, H) is the number of subgraphs of K(v) ,  isomorphic to G, that contain a 

fixed copy of H in K(v). For every two graphs G, H, N(G, H) is the number of 

subgraphs of G isomorphic to H. For every graph H and every positive integer l, 

N(l, H)  -- max N(Gt, H), where the maximum is taken over all graphs G~ with l 

edges. N(l, H) is known for every complete graph H and every positive integer l. 

P. Erd6s (private communication) posed the problem of determining or estimat- 

ing N(l, H) for other graphs. We shall investigate the asymptotic behaviour of 

N(l. H) for fixed H when l tends to infinity. 

By a theorem of Erd6s and Hanani [2], or by a special case of the 

Kruskal-Katona Theorem (a simple proof of which is given in [I]) we know that 

if / = (~)+r,  O<=r<=t, then for every v_>-2 

l- 

It  is also easy to check that 

l 
(2) N(l,K(1,k))=(~) and N(l,I(k))=(k ). 

REMAR~: I. Obviously, for every graph H with k edges and for every l, 

N(l, H)  _-< (~). In this sense K(1, k ) and I(k ) are extremal, and we can prove that 

these are the only extremal graphs. As a matter of fact we can prove the 

following stronger result: 

Let H be a graph with k edges and suppose that there exists an integer 

l _-> k + 2  such that N(I,H)= (~,). Then H is isomorphic to either K ( 1 , k )  or 

I(k). 
We can also show that if IE(H)I = k, then N(k + 1 ,H)  = k + l = (k~) i f f  H is 

obtained from an edge-transitive graph G by deleting an edge. 

We shall not give the proofs as they are rather lengthy and not very 

complicated. 

Our first theorem describes the asymptotic behaviour of N(l, H) for any graph 

H containing a perfect matching. 

For any graph H with a perfect matching, let x(H)= x(H, I(k(H))) denote 
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the number of copies of H in K(I V(H)I ) that contain a fixed perfect matching 

of K(I V(H)]), and let m ( H ) =  N(H,I (k(H)) )  denote the number of perfect 

matchings in H. (Recall that k (H) = ~-I V(H)I.) Using these notations we prove: 

THEOREM 1. If H has a perfect matching then 

1 x(H)  /k,.,+ O(lkt . ,  ,,2). 
(3) N(I, H) - k (H)!" m (H) 

PROOF. Let k = k (H) .  We first show that 

(4) N(I, H) < X(H) ( ~ ) < I "  x(H) I k. 
= m ( H )  = k !  m ( H )  

Let G~ be a graph with l edges. The number of sets of k independent edges in 

Gt does not exceed (~,). Each such set can be completed to an H in Gt in at most 

x (H)  ways, and in this fashion each copy of H m Gt is obtained precisely m (H)  

times. Therefore  

and (4) is proved. 

m(H)  

Obviously, N(I,H) is a nondecreasing function of l and thus, in order to 

complete the proof, we need only show that if n = [~2-/] then 

1 x(H)  i k O(lk_,,2) N ( K ( n ) ' H ) =  k-~.m(H) + 

The number of sets of k independent edges in K(n) is 

2 2 : n ( n  - 1 ) . . -  (n  - 2k + 1) 
k! 2 k "k! 

Each such set produces exactly x(H) H ' s  in K(n) ,  and each H in K(n)  is 

obtained exactly m (H)  times. Therefore  (using n = [V~] ) :  

(5) N(K(n) ,H)  = n ( n - 1 ) ' ' ' ( n - 2 k + l ) ' x ( H )  1 x(H)  l~ O(lk_,,2) 
2" . k !  m(H)=k--~.m(H) + " 

Combining (4) and (5) we get (3). 

As immediate consequences of Theorem 1 we obtain: 

COROLLARY 1. For every integer k >-_ 1 

N(l, P(2k - 1)) = 2k-~l k + O(l k ./2). 

[] 
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COROLLARY 2. 
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and 

As can easily be checked 

20/2 
c(H)  = ---~. N(K(v ) ,  H). 

20/2 
(6) c(H) = I Aut HI" 

LEMMA 1. Let H be a graph. Put k = k(H);  then 

N(l, H)>-__ c ( n ) l  k + O(lk-1/2). 

PROOF. Let v = [ V(H)I, b = N(K(v ) ,  H)  and n = IV'2-/]. Then 

N(I,H)>= N ( K ( n ) , H ) =  ( n ) b =  n ( n - 1 ) . . - ( n - 2 k  + 1)b = n2k + O(n2~-~)b 
(2k)! (2k)! 

e L i k + O(lk-,/2)= c(H) l  k + O(l  k ,/2) [] 
= (2k)i b .  

DEFINITION 2. A graph H is asymptotically extremaily complete (for short: 

a.e.c.) if for every positive integer l there is a positive integer n so that 

N(l, H) = (1 + O(l "2))N(K(n), H). 

REMARK 2. The proof of Theorem 1 shows that any graph H with a perfect 

matching is a.e.c., and from (1) it is easily deduced that every complete graph is 

a.e.c. 

For every integer k >= 2 

2 k 21 k 0(1 k I/2) 
N(l, C(2k )) = T + 

As we shall see (Theorem 3 and Corollary 3) the asymptotic behaviour of 

N(L C(2k + 1)) is analogous to that of N(/, C(2k)) (i.e. with exponent k +~), 

whereas the asymptotic behaviour of N(/ ,P(2k))  is different (with exponent 

k + l ) .  

Theorem 1 can be generalized. First we need a few definitions and lemmas. 

DEFINITIO~q 1. Let H be a graph on v vertices. The graph-constant of H, 

denoted by c(H),  is given by 
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LEMMA 2. 

(7) 

N. ALON 

A graph H is a.e.c, if and only if 

N(l, H) = c(H)l k + O(Ik-"2), 

Israel J. Math. 

x (H, H') 
N(G,, H) ~ N(G,, H') .  N(H, H ' ) '  

which proves (11). [] 

where k = k (H) = ½1 V(H)t. 

PROOf. Assume first that H is a.e.c. By Definition 2, for every integer l there 

is an integer n so that 

(8) n(n - 1) < l and N(l, H )  = (1 + O(l-'/2))N(K(n), H). 
2 = 

Let  v = ] V(H)[ .  Then 

m K ( n ) , m  = m = . ( n - 1 ) . . .  ( . -  2k + l) 
(2k)[ N(K(v) ,  H) 

(9) ~ . - - 1  2 k 
--N_ 

Combining (8) and (9) we get 

(10) N(l, H) <_- c(H)l k + O(Ik-'/2). 

Inequality (10) and Lemma 1 prove (7). 

Conversely, if (7) holds then, by the proof of Lemma 1, n = [X/2-/] satisfies (8) 

and thus H is a.e.c. [] 
Lemma 2 determines the asymptotic behaviour of N(l, H) for a given graph H 

in terms of the graph constant c(H), provided we know that H is a.e.c. 

Therefore  it will be useful to find simple sufficient conditions for a graph H to be 

a.e.c. In order to do this we shall find certain operations that produce new a.e.c. 

graphs from given a.e.c, graphs. 

We first prove three simple lemmas: 

LEMMA 3. Let H' be a spanning subgraph of a graph H. Then 

( I f )  < x(H,H')  H'). N(l, H) = N(H, H') N(l, 

PROOF. Given a graph Gt, every H '  in G~ can be completed (by adding edges) 

to an H in G, in at most x(H,H')  ways, and in this fashion each H in Gt is 

obtained exactly N(H, H') times. Therefore 
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LEMMA 4. Let H be a graph on v vertices, let k = v /2 and let p be a fixed 
integer (positive, negative or zero). I f  n = [X,/21] - p then 

(12) N(K(n ) ,  H)  = c(H)l  k + O(l  k ~,2). 

If, in addition, H is a.e.c., then 

(13) N(K(n ) ,  H )  = (1 + O(i-'n))N(l,  n ) .  

PROOF. By a simple computation 

N ( K ( n ) ' H ) = ( n )  (2k)! + 1 ) N ( K ( v ) ' H )  

N ( K ( v ) , H ) n 2 k  - ' ) = ~  
= (2k)! + O(n2k N ( K ( v ) ' H ) l k  + O(lk-'n) 

= c(H)l  k + 0(1 k ,/2), 

which proves (12). 
If H is a.e.c, then, by Lemma 2, 

(14) N(l, H)  = c(H)l  k + O(Ik-'/2). 

Combining (12) and (14) we obtain (13). [] 

LEMMA 5. Let H be the disjoint union of two graphs H~ and H2. Let y be the 

number of ordered pairs (H~,/-/2), where ~ is isomorphic to Hi (i = 1, 2) and 

H,, H2 are disjoint subgraphs of H. (H is, obviously, the disjoint union of each such 
pair.) Then 

(15) N(I, H)  <= 1N( l ,  H,) .  N(I, H2). 

PROOF. Given a graph Gt, we claim that 

(16) y-  N(Gt, H)  <- N(G,, n , ) .  N(G,, n2). 

Indeed, on the right side of (16) appears the number of all ordered pairs 

(Hi, H2), where/q,  is isomorphic to Hi (i = 1, 2) and HI,/-/2 are subgraphs of Gt, 

whereas the left side of (16) represents only the number of those ordered pairs 

(H,,/-/2) in which H,,  Hz are disjoint. Therefore (16) is proved and (15) follows. 
[] 

Now we are ready to prove 

THEOREM 2. (i) I f  H'  is a spanning subgraph of H and H'  is a.e.c., then so is 
H. 
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(ii) If H is the disjoint union of a.e.c, graphs, then H is a.e.c. 

PROOf. (i) By Lemma 3 

x (H, H' )  
(17) N(l, H) <= N(l, H'). N(H, H')" 

By Definition 2, for every integer l there is an integer n so that 

(18) 

and 

(19) 

Israel J. Math 

N(l, H')  = (1 + O(l-l/2))N(g(n), n'). 

Combining (17), (18) and (19) we get 

N(l, H) >= N(K(n), H) 

x (H, H' )  
= N(K(n),H') .  N(H,X(H'H')H') = (1 + O(1-":))N(I,H').N(H,H, ) 

=> (1 + O(l-*'2))N(l, H). 

Therefore for every integer l there is an integer n which satisfies (18) and 

N(K(n), H)  = (1 + O(I-t/2))N(I, H). 

Thus H is a.e.c. 

(ii) Obviously it is enough to prove that if H is the disjoint union of two a.e.c. 

graphs H~, H2, then H is a.e.c. Let y be the number of ordered pairs ( H ,  H2), 

where/q~ is isomorphic to Hi (i = 1, 2) and Ht, H~ are disjoint subgraphs of H. 

By Lemma 5 

N(I, H) <= 1N(l,  H,). N(l, H2). (20) 

Now set n = [V'2-/] and let v~ = I V(Hz)I. Then, by a simple combinatorial 

argument and by Lemma 4 

N(K(n), H) = N(K(n), HO. N(K(n - v O, 1-12) 
Y 

(21) 1 

= y(1  + 0(1-'/2)) • N(l, H1)" N(l, H2). 

Combining (20) and (21) we deduce that H is a.e.c. [] 
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In the next lemma we calculate the graph-constants of the graphs obtained by 
the operations considered in Theorem 2. 

LEMMA 6. (i) If  H '  is a spanning subgraph of H, then 

c (H)  = c (H' ) -  x (H, H ' )  
N(H,  H')" 

(ii) Let H be the disjoint union of s graphs H~, H2," • ", H,. Let C,, C2, ' .  ", Cn be 

the distinct isomorphism types of the connected components of H. For 1 <= i <= s, 

1 <= j <- n, let t~j be the number (possibly zero) of connected components of H, of 

type C,. Let ti = ~,~=~ t~j be the number of connected components of H of type Cj 

(j = 1 , 2 , . . . , n ) .  Put 

y = l - ~ i  t j! . s 

I-[ t,j ! 
/ = 1  i=1  

then 

s 

(22) c ( H )  = 77, I-I c (/4,). 
Y i - l =  

PROOF. 

(ii) Obviously 

(23) 

and 

(24) 

(i) is a direct consequence of Definition 1. 

IAut H~I= l-zI t,i !1Aut C 1 ''j 
j = l  

( i = 1 , 2 , - . . , s )  

IAut HI  = IZl tj! IAut G I',. 
i = l  

Combining (23), (24) and (6) we obtain (22). [] 

REMARK 3. Theorem 1 can be deduced as a special case of Theorem 2: Let H 

be a graph containing a perfect matching, I V(H)J = 2k. As I(1) is obviously 

a.e.c, with a graph constant c ( I (1) )=  1, we deduce, by Theorem 2(ii), that 

H ' =  I ( k )  is a.e.c., and by Lemma 6(ii) we find that c ( H ' ) =  1/k !. H '  is a 

spanning subgraph of H and thus, by Theorem 2(i) and Lemma 6(i), H is a.e.c. 

with a graph constant 

1 x(H, H') 
c (H)  = -~,." N(H,  H')" 
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This, together with Lemma 2, proves Theorem 1. (Theorem 2 is certainly more 

general than Theorem 1. It determines, for instance, using Lemmas  2 and 6, the 

asymptotic behaviour of N(l, H),  H being the disjoint union of K(3) and I ( l ) .  

This H obviously has no perfect matching.) 

Next we prove: 

THEOREM 3. Every cycle C(h ) is a.e.c. 

PROOF. As C(3) = K(3), the theorem is true for h = 3. By Remark  2 it is true 

for every even h = 4. Thus we have to prove the theorem only for odd h = 5. By 

Lemmas  1, 2 it suffices to show that for every k => 2 and every l 

(25) 

where 

N(l, C(2k + 1)) <= ckl t2k+wz, 

(26) 
2(2k - 1 )/2 

c~ =c(C(2k + l ) )=2k  + l .  

We prove (25) for every fixed k => 2 by induction on / .  For l = 1, 2, • •., 2k (25) is 

trivial. Assuming it holds for every l', l '  < / ,  let us prove it for I. Consider a fixed 

graph G~. If every vertex of G, is of degree => n = [X/~/], then Gt has at most 

n + 2 = [k/2-/] + 2 vertices (as it has l edges, l > 2) and thus Gt is a subgraph of 

K(n + 2). Since k _-> 2 we get: 

N(G,, C(2k + 1))<-N(K(n +2), C(2k + 1))= (n +2)(n + 1 ) . . - (n  - 2 k  +2) 
2(2k + 1) 

as needed. 

Therefore  

/ 2k+l 2(2k"- I)/2 
- -  1(2k+1)/2 = Ck l  (2k+1)/2, 

=< 2(2k + 1) - 2(2k + 1) 

we may assume that there is a vertex u in G, of degree x, 

0 < x  _-<[X/2-/]-1. We now estimate the number  of C(2k + 1)'s in G~ that 

contain u. The number  of subgraphs of G, consisting of two edges incident with u 

and k - 1 independent edges not adjacent to the former  two does not exceed 

k - 1 1)! 

Each such subgraph of G~ can be completed to a C(2k + 1) in Gt in at most 

2~-'(k - 1)! ways, and in this fashion all the C(2k + 1)'s in G~ that contain u are 

obtained. Therefore  the number  of C(2k + 1)'s in G, that contain u does not 

exceed 
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2k-2x2(l -- X)  k-' .  

By the induction hypothesis, the number  of C ( 2 k  + 1)'s in GI that do not 

contain u is at most 

c~ (I - x) '2~ +')n. 

Thus, in order to complete  the proof  we must only show that for 0 < x-<  

[VYll- 1 

ck (l - x )¢2k +,)/2 + 2k-2x 2(i _ x ) k - '  <= cklak+,)/2. 

Using the convexity of the function f ( l ) =  I ak+')n and formula (26) we obtain 

ck (l '2k +' )/2 _ (l - x )ak +, )12 ) > 2 k + 1 c ,x  (l - x )~2, -, ~/2 
= 2 

= 2~:k-3:.x (l - x )¢~-'~l~. 

Therefore  all that remains to show is that for 0 < x -< IN/2-/] - 1 

2a*-3J/2x(l _ x)ak-,)/2>= 2k-2x2(l _ X) k ', 

or  

which is trivial. 

REMARK 4. 

N/2(I x)  > - -  ~ X ~  

[]  

By Theorem 2 and Theorem 3, every graph that contains a 

spanning subgraph which is a disjoint union of cycles and isolated edges is a.e.c. 

We shall prove that the converse is also true and thus obtain a characterization 

of a.e.c, graphs (Theorem 4). In addition we shall determine the order  of 

magnitude of N ( l ,  H )  as l ~ o0 for every graph H (Theorem 5). 

We begin with a definition and a few lemmas. 

DEFINmON 3. For every graph H :  

(H)  = max {[ S [ - I N ,  (S)[: S C V(H)}. 

LEMMA 7. A graph H contains  a subgraph H '  which  is a disjoint  un ion  o/  

cycles  and  isolated edges  iff ~ ( H )  = O, i.e., iff /or  every S C V ( H )  

(27) [ N , ( S ) [ > = I S [ .  

PROOF. If H has a spanning subgraph H '  which is a disjoint union of cycles 

and isolated edges, then for every S C V ( H )  
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IN. ( s ) l ->  IN..(s)I >-Isl. 

Conversely, suppose that (27) holds for every S C V ( H ) .  Assume V ( H ) =  

{v,, v2,." ", v.}. Form a bipartite graph G with bipartition (X, Y), where X = 

{x,,x2,. .  ",x,} and Y = {y , ,y2 , . . - ,y ,} ,  (]XI = l Y I = ] V ( H ) ]  = n), by joining x, 

to y, iff v~ and v, are adjacent in H. Obviously, for every S C X  

INo(S)I>=Isl, 

and therefore by the theorem of Hall and KBnig (see [3]) G contains a perfect 

matching M. Let H '  be the spanning subgraph of H in which v, is joined to v~ itt 

x~y~ E M. It is easily checked that H '  is a disjoint union of cycles and isolated 

edges. []  

LEMMA 8. Let  H be a graph and let k = k ( H ) ,  ~ = 3 ( H ) > 0 .  Then there 

exists a positive constant c~ so that for all sufficiently large l 

N (l, H )  >= c, l  k +~,2 

PROOF. Let SoC V ( H )  be a subset of V ( H )  such that 

6 = IS , , } - IN , (S , , ) I .  

Put 

S, = So\(S,, n N(S,,)). 

Clearly S~ is a nonempty independent set of vertices of H and 

Therefore  

N(S,) C N(S,,)\(S,, n N(S,,)). 

I$, I - I N ( S O l  ~ I s , , [ -  I N(S,,)I = 8, 

and by the definition of 6 

[ S , t - I N ( S , ) I  = 3. 

Define 

s = Is ,  I, t : IN(SOl ,  

Obviously S, N N ( S , )  = Q and 

(28) 

H, = n \ ( s ,  u N(S,)).  

6 = s - t ,  

k ( H , )  = k ( H ) -  (s + t)/2 = k - (s + t)/2. 
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Put n = [X/)], r = [l/(2t)]. Assume l is sufficiently large so that n => t and r > 0. 

Let K(n)  be a compleie  graph with vertices b , . . . ,  b, and let G be the graph 

obtained by adding to K(n)  r new vertices a , . . . , a r  and r .  t edges aibj, 
1 -<_ i <= r, 1 =< j <_- t. Obviously 

IE(G)I<-_I. 

Each choice of s a , ' s  among a , .  • -, ar and each copy of H~ in the complete  graph 

K ( n - t )  spanned by b,+,, . . . ,b,  produce at least one copy of H in G and 

different choices produce different H ' s .  Therefore  

(29) N ( I , H ) > - N ( G , H )  >- ( r s ) N ( K ( n - t ) , H , ) =  ( [ l / 2 t ] ) N ( K ( n - t ) , H , ) .  

A simple computat ion (see the proof of (12) in Lemma 4) shows that there is a 

positive constant c2 such that 

(30) N ( K (n - t ), H~) = c2lkt"" + O(lk'n"-z/2). 

(28), (29) and (30) prove that there is a positive constant c~ so that for all 

sufficiently large t 

N(I, H)>-_ ctl ~ • tk(,,) __ cll' • lk-(~+,)/2 = cllk+~:2. [] 

LEMMA 9. Let H be a graph with k = k(H) ,  ~ = 8 ( H ) > 0 .  Then there is a 

positive constant c2 such that for every I 

(31) N(l, H)  <= czl k+~/2. 

PROOF. Let S'C V ( H )  be an independent set of vertices of H such that 

a =ISI-IN,,(S)I. 

(The existence of such a set was established in the proof  of Lemma  8.) Clearly 

S f ' I N , ( S ) = O .  Let s =IS],  t = I N , ( S ) I .  Then 

(32) t~ = s - t. 

Let J be the bipartite subgraph of H with bipartition (S, N ,  (S)) in which v, • S 

is joined to vj E N ,  (S) if and only if v~ and vi are adjacent in H. 

First we prove, using the theorem of Hall and K6nig, that ./ contains a 

matching that saturates every vertex of N~ (S). Given a set of vertices A C 

N , ( S ) ,  we have to prove that INj(A)I>=IAf. Suppose this is false and 

I N j ( A ) I < I A I .  Put 

B = S \ N ,  (A) .  
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B is nonempty, since 

f B I = I S I - I N , ( A ) I > I S I - I A [ > - I S I - I N , ( S ) I =  8 > 0  

and clearly 

IV. (B ) C IV. (S )\A. 

Clearly 

(33) N(l, J) <- c31". 

Put 

L = H\(S U N ,  (S)). 

s + t  s + t  
k ( L ) =  k(H) 2 k 2 

Next we prove that L contains a spanning subgraph L '  which is a disjoint 

union of cycles and isolated edges. This, together with Remark 4, proves that L 

is a.e.c., and thus by Lemma 2 there exists a positive constant c4 so that for all l 

(34) N (l, L) <= C41 k(L)  = c41 k-(s+'~2. 

By Lemma 7, in order to establish the existence of the spanning subgraph L '  we 

need only show that for every C C V(L)  

(35) INL (C)l--> Ic l .  

Assuming this is false, let C C V(L)  be a counterexample, i.e., INL (C)t <IC[ .  

Therefore 

In I - I N ,  (n)l = IS I - INJ ( A ) I -  IN-(B)I--> IS I - tNJ  ( A ) I -  INn (S)I + IAI 

> t S I - I N . ( S ) I = 8 ,  

which contradicts the definition of 8. Thus J contains a matching M that 

saturates every vertex of N,(S ) ,  and IMl=t. Let U C S  be the set of 

M-unsaturated vertices ofJ,  I u I  = s - t. Since H has no isolated vertices there 

exists a set N of s - t  edges of J, one incident with each vertex of U~ Put 

J '= (V(J ) ,M U N). J' is a spanning subgraph of J with s edges. Therefore 

N(l'J')<= (s l )< l 

and by Lemma 3 there is a positive constant c3 such that for all l 
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Put 

Obviously 

Therefore 

D = C U S .  

IV, (D)  = N ,  (C) t.3 N ,  (S)  = NL (C) U N ,  (S). 

] D I - [ N , ( D ) ]  = [CJ + I S [ - ( I N .  ( C ) I + I N . ( S ) ] ) > I S I - I N . ( S ) I  = a, 
/ 

which contradicts the definition of 6. Thus (35) is proved and (34) follows. Let H '  

be the spanning subgraph of H which is the disjoint union of J and L. By (32), 

(33), (34) and Lemma 5 there exists a positive constant c5 such that 

(36) N(I, H' )  <- c51 k ~+')/~. I t = csl k÷~/2. 

(36) and Lemma 3 imply (31). [] 

Now we are ready to prove the two main theorems of this paper: 

THEOREM 4. Let H be a graph. Then the following conditions are equivalent: 

(i) H is a.e.c. 

(ii) 3 ( H )  = 0, i.e., for every S C V ( H )  

[N(S)[>-[S[. 

(iii) H contains a spanning subgraph which is a disjoint union of cycles and 

isolated edges. 
(iv) N(l, H )  = c(H)l~ 'm + O(lk'm-l/2). 

PROOF. Conditions (i) and (iv) are equivalent by Lemma 2 and conditions (ii) 

and (iii) are equivalent by Lemma 7. By Remark 4, (iii) implies (ii). Thus in order 

to complete the proof we need only show that (iv) implies (ii). 

Suppose (ii) is false. Then 3 ( H ) >  0, and by Lemma 8 there exists a positive 

constant cl so that for all sufficiently large l 

N (l, H )  >= c,l k¢m+8¢")/2, 

which contradicts (iv). Thus (iv) implies (ii) and the theorem is proved. [] 

THEOREM 5. Let H be a graph and let k = k (H) ,  3 = 3(H) .  Then there are 

two positive constants ct, c2 so that for all l >->_ ]E(H)] 

c,l k+~/2 <= N (l, H )  <= cd k+a/2. 
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PROOF. If ~ = 0, Theorem 4 contains a sharper result. Otherwise ~ > 0, and 

the result fol lows from Lemma 8 and Lemma 9. (The constant cl in Lemma 8 can 

be adjusted to fit all l => I E ( H ) [ . )  [ ]  

As a very special case of  Theorem 5 we obtain: 

COROLLARY 3. For every k >- 1 there are two positive constants cl, c2 so that for 

all sufficiently large l 

cll  k+l <- N (l, P ( 2 k ) ) -  < c21TM. 
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